Platform: Code4rena
Start Date: 01/08/2023
Pot Size: $91,500 USDC
Total HM: 14
Participants: 80
Period: 6 days
Judge: gzeon
Total Solo HM: 6
Id: 269
League: ETH
Rank: 23/80
Findings: 1
Award: $482.48
🌟 Selected for report: 0
🚀 Solo Findings: 0
482.4792 USDC - $482.48
The Fullmatch
library being used in goodentry
doesn't correctly handle the case when an intermediate value overflows 256 bits. This happens because an overflow is desired in this case but it's never reached.
TokenisableRange.sol#deposit()
, TokenisableRange.sol#returnExpectedBalanceWithoutFees()
and TokenisableRange.sol#getTokenAmountsExcludingFees()
: LiquidityAmounts.getAmountsForLiquidity is called to calculate and return the token0
and token1
values for a given amount of liquidity, the current pool price and the price at the tick boundary.File: LiquidityAmounts.sol function getAmountsForLiquidity( uint160 sqrtRatioX96, uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount0, uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); if (sqrtRatioX96 < sqrtRatioAX96) { amount0 = getAmount0ForLiquidity( sqrtRatioAX96, sqrtRatioBX96, liquidity ); } else if (sqrtRatioX96 < sqrtRatioBX96) { amount0 = getAmount0ForLiquidity( sqrtRatioX96, sqrtRatioBX96, liquidity ); amount1 = getAmount1ForLiquidity( sqrtRatioAX96, sqrtRatioX96, liquidity ); } else { amount1 = getAmount1ForLiquidity( sqrtRatioAX96, sqrtRatioBX96, liquidity ); } } }
getAmount0ForLiquidity()
, getAmount0ForLiquidity()
, getAmount1ForLiquidity()
and getAmount1ForLiquidity()
are called and the function FullMath.mulDiv
is used to calculate the parameters.pragma solidity ^0.8.4; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. // EDIT for 0.8 compatibility: // see: https://ethereum.stackexchange.com/questions/96642/unary-operator-cannot-be-applied-to-type-uint256 uint256 twos = denominator & (~denominator + 1); // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result function mulDivRoundingUp( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { result = mulDiv(a, b, denominator); if (mulmod(a, b, denominator) > 0) { require(result < type(uint256).max); result++; } }
FullMath
library is currently used was designed in order to handle "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits.FullMath.mulDiv(type(uint256).max / 2, 3, 111))
.>0.8
directly as the execution will revert due to an overflow. Because the original library was created with solidity version <0.8.0
(which doesn't revert on overflows) this behaviour was allowed as the expected intermediatory overflow could be reached.>0.8
, this operation would revert as the intermediate calculations would overflow, meaning that it can't handle those multiplication and division where an intermediate value overflows the 256 bits.Manual Review
mulDiv
and mulDivRoundingUp
in an unchecked block
. A modified version of the original Fullmath
library that uses unchecked blocks to handle the overflow, can be found in the 0.8
branch of the Uniswap v3-core repo.Math
#0 - c4-pre-sort
2023-08-10T05:43:24Z
141345 marked the issue as duplicate of #58
#1 - c4-judge
2023-08-20T17:30:20Z
gzeon-c4 changed the severity to 3 (High Risk)
#2 - c4-judge
2023-08-20T17:30:30Z
gzeon-c4 marked the issue as satisfactory